Correlating physical changes and enhanced enzymatic saccharification of pine flour pretreated by N-methylmorpholine-N-oxide.

نویسندگان

  • Ye Liu
  • Qixin Zhong
  • Siqun Wang
  • Zhiyiong Cai
چکیده

Pretreatment of lignocellulosic biomass by N-methylmorpholine-N-oxide (NMMO), a solvent used in the textile industry to dissolve cellulose for production of regenerated cellulose fibers, was observed to enhance significantly enzymatic saccharification and fermentation. The enhancement was speculated to have been caused by reduced cellulose crystallinity after dissolution and precipitation processes. This work focused on assessing several physical changes and their correlations to enzymatic saccharification of pine flour after NMMO pretreatment. Results from microstructure, surface chemical composition, and cellulose accessibility complementarily illustrated the enrichment of cellulose on pine flour surface after NMMO pretreatment. Cellulose accessibility was highly correlated to the overall glucan conversion rate. Changes in crystallinity were correlated to the initial hydrolysis rate but not overall glucan conversion rate. Findings from this work may contribute to lignocellulosic bioenergy from development of novel pretreatment technologies utilizing NMMO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses.

We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5-6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). The adsorption isotherms ...

متن کامل

High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation.

Lodgepole wood chips were pretreated by sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) at 25% solids loading and 180 °C for 20 min with sulfuric acid and sodium bisulfite charges of 2.2 and 8 wt/wt% on an oven-dry wood basis, respectively. The pretreated wood chips were disk-milled with pretreatment spent liquor and water, and the solid fraction was separated from the...

متن کامل

Alkali pretreated of wheat straw and its enzymatic hydrolysis

The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and so...

متن کامل

On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine.

This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite Pretreatment to Overcome Recalci...

متن کامل

Sequential parametric optimization of methane production from different sources of forest raw material

The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2011